An upper bound of a generalized upper Hamiltonian number of a graph

نویسندگان

چکیده

In this article we study graphs with ordering of vertices, define a generalization called pseudoordering, and for graph $H$ the $H$-Hamiltonian number $G$. We will show that concept is both Hamiltonian traceable number. prove equivalent characteristics an isomorphism $G$ using Furthermore, fixed each path has maximal upper number, which same claim numbers numbers. Finally every connected only paths have

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a study on the effectiveness of textual modification on the improvement of iranian upper-intermediate efl learners’ reading comprehension

این پژوهش به منظور بررسی تأثیر اصلاح متنی بر بهبود توانایی درک مطلب زبان آموزان ایرانی بالاتر از سطح میانی انجام پذیرفت .بدین منظور 115 دانشجوی مرد و زن رشته مترجمی زبان انگلیسی در این پزوهش شرکت نمودند.

An Upper Bound Analysis of Sandwich Sheet Rolling Process

In this research, flat rolling process of bonded sandwich sheets is investigated by the method of upper bound. A kinematically admissible velocity field is developed for a single layer sheet and is extended into the rolling of the symmetrical sandwich sheets. The internal, shear and frictional power terms are derived and they are used in the upper bound model. Through the analysis, the rolling ...

متن کامل

A generalized upper bound solution for bimetallic rod extrusion through arbitrarily curved dies

In this paper, an upper bound approach is used to analyze the extrusion process of bimetallic rods through arbitrarily curved dies. Based on a spherical velocity field, internal, shearing and frictional power terms are calculated. The developed upper bound solution is used for calculating the extrusion force for two types of die shapes: a conical die as a linear die profile and a streamlined di...

متن کامل

An upper bound for the minimum rank of a graph

For a graph G of order n, the minimum rank of G is defined to be the smallest possible rank over all real symmetric n × n matrices A whose (i, j)th entry (for i 6= j) is nonzero whenever {i, j} is an edge in G and is zero otherwise. We prove an upper bound for minimum rank in terms of minimum degree of a vertex is valid for many graphs, including all bipartite graphs, and conjecture this bound ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archivum mathematicum

سال: 2021

ISSN: ['0044-8753', '1212-5059']

DOI: https://doi.org/10.5817/am2021-5-299